Selective sampling to overcome skewed a priori probabilities with neural networks
نویسندگان
چکیده
Highly skewed a priori probabilities present challenges for researchers developing medical decision aids due to a lack of information on the rare outcome of interest. This paper attempts to overcome this obstacle by artificially increasing the mortality rate of the training sets. A weight pruning technique called weight-elimination is also applied to this coronary artery bypass grafting (CABG) database to assess its impact on the artificial neural network's (ANN) performance. The results showed that increasing the mortality rate improved the sensitivity rates at the cost of the other performance measures, and the weight-elimination cost function improved the sensitivity rate without seriously affecting the other performance measures.
منابع مشابه
Neural Network Classifiers Estimate Bayesian a posteriori Probabilities
Many neural network classifiers provide outputs which estimate Bayesian a posteriori probabilities. When the estimation is accurate, network outputs can be treated as probabilities and sum to one. Simple proofs show that Bayesian probabilities are estimated when desired network outputs are 2 of M (one output unity, all others zero) and a squarederror or cross-entropy cost function is used. Resu...
متن کاملAdaptive Decision Fusion in Detection Networks
In a detection network, the final decision is made by fusing the decisions from local detectors. The objective of that decision is to minimize the final error probability. To implement and optimal fusion rule, the performance of each detector, i.e. its probability of false alarm and its probability of missed detection as well as the a priori probabilities of the hypotheses, must be known. How...
متن کاملBeta Distribution of Human MTL Neuron Sparsity: A Sparse and Skewed Code
Single unit recordings in the human medial temporal lobe (MTL) have revealed a population of cells with conceptually based, highly selective activity, indicating the presence of a sparse neural code. Building off previous work by the author and J.C. Collins, this paper develops a statistical model for analyzing this data, based on maximum likelihood analysis. The goal is to infer the underlying...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملUse of Artificial Neural Networks to Examine Parameters Affecting the Immobilization of Streptokinase in Chitosan
Streptokinase is a potent fibrinolytic agent which is widely used in treatment of deep vein thrombosis (DVT), pulmonary embolism (PE) and acute myocardial infarction (MI). Major limitation of this enzyme is its short biological half-life in the blood stream. Our previous report showed that complexing streptokinase with chitosan could be a solution to overcome this limitation. The aim of this re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings. AMIA Symposium
دوره شماره
صفحات -
تاریخ انتشار 2000